Emblem Sub Level Top PUBLICATIONS
Archived Press Releases
Emblem Sub Level Logo International Fiberoptic Research
Emblem Sub Level Bottom
December 5, 2001

International Research Gains From Optical Networking;
Chicago-Based StarLight Project Deploys the Latest Fiberoptic Technology


The StarLight℠ network-research facility is now open for business, providing high-speed connections for U.S. researchers to communicate with colleagues abroad. Short for “Science Technology and Research Light-Illuminated Gigabit High-performance Transit,” StarLight uses the latest optical technology to achieve speeds of 2.5 billion bits per second (gigabits), with a full 10 gigabits expected by Spring 2002.

Starlight uses both electronic and optical switches to manage the individual wavelengths (called “lambdas”) of existing local, national and international fiber-optic bandwidth. The resulting optical connection is a stable resource for far-flung scientists and engineers, while also presenting a unique “laboratory” for researchers who study advanced networking itself.

StarLight is a project of the University of Illinois at Chicago (UIC), Northwestern University and the Argonne National Laboratory, with funding from the National Science Foundation (NSF). The facility is an important part of the growing “Cyber-Infrastructure” that supports applications such as real-time, multi-site virtual reality presentations, advanced interactive data mining and remote control of large-scale instrumentation (including telescopes and microscopes).

“Think of a two-lane road passing by your house as the equivalent of, say, a DSL or cable modem line,” said Tom DeFanti, professor of computer science at UIC and co-leader of the project. “StarLight supports networking equivalent to a 10,000-lane highway.”

The Netherlands’ national research and education computer network, SURFnet, has the first international connection to StarLight. Its 2.5 gigabits are expected to reach 10 gigabits by next spring. Joe Mambretti, StarLight project co-leader at Northwestern, expects further 10-gigabit links to Canada, Asia and several European sites in 2002.

StarLight will also host connections to the world’s most-advanced multi-site supercomputing system. Called the TeraGrid, that NSF facility was awarded in August 2001 to a team from the University of Illinois at Urbana-Champaign, the University of California at San Diego, and the California Institute of Technology and Argonne.

“NSF supports StarLight for numerous reasons,” said Aubrey Bush, director of the NSF Division for Advanced Networking Infrastructure and Research. “My division is interested in the facility as an experimental testbed for trying out new networking technologies. But it also provides an important capability to scientists and engineers who need ultra-fast access to on-line resources across the world. By stretching the boundaries of what is feasible, StarLight helps us see the future of global networking while helping to solve today’s pressing scientific problems.”

StarLight is the latest evolution of STAR TAP℠ (Science, Technology And Research Transit Access Point), an on-going project managed by UIC and Argonne. STAR TAP’s top speed of 622 million bits per second (megabits) serves U.S. researchers with connections to North America, Europe, Asia, Australia, South America and the Middle East.

NSF PR 01-98

Media Contact:
Peter West
pwest@nsf.gov
ph: +1.703.292.8070

Program Contact:
Tom Greene
tgreeene@nsf.gov
ph: +1.703.292.8900